Extensions 1→N→G→Q→1 with N=C22 and Q=C4xD15

Direct product G=NxQ with N=C22 and Q=C4xD15
dρLabelID
C22xC4xD15240C2^2xC4xD15480,1166

Semidirect products G=N:Q with N=C22 and Q=C4xD15
extensionφ:Q→Aut NdρLabelID
C22:(C4xD15) = C4xC5:S4φ: C4xD15/C20S3 ⊆ Aut C22606C2^2:(C4xD15)480,1025
C22:2(C4xD15) = Dic15:19D4φ: C4xD15/Dic15C2 ⊆ Aut C22240C2^2:2(C4xD15)480,846
C22:3(C4xD15) = C4xC15:7D4φ: C4xD15/C60C2 ⊆ Aut C22240C2^2:3(C4xD15)480,893
C22:4(C4xD15) = C22:C4xD15φ: C4xD15/D30C2 ⊆ Aut C22120C2^2:4(C4xD15)480,845

Non-split extensions G=N.Q with N=C22 and Q=C4xD15
extensionφ:Q→Aut NdρLabelID
C22.1(C4xD15) = D60.3C4φ: C4xD15/Dic15C2 ⊆ Aut C222404C2^2.1(C4xD15)480,872
C22.2(C4xD15) = D60.6C4φ: C4xD15/C60C2 ⊆ Aut C222402C2^2.2(C4xD15)480,866
C22.3(C4xD15) = C23.6D30φ: C4xD15/D30C2 ⊆ Aut C221204C2^2.3(C4xD15)480,166
C22.4(C4xD15) = M4(2):D15φ: C4xD15/D30C2 ⊆ Aut C221204+C2^2.4(C4xD15)480,183
C22.5(C4xD15) = C4.D60φ: C4xD15/D30C2 ⊆ Aut C222404-C2^2.5(C4xD15)480,184
C22.6(C4xD15) = C23.15D30φ: C4xD15/D30C2 ⊆ Aut C22240C2^2.6(C4xD15)480,842
C22.7(C4xD15) = M4(2)xD15φ: C4xD15/D30C2 ⊆ Aut C221204C2^2.7(C4xD15)480,871
C22.8(C4xD15) = C8xDic15central extension (φ=1)480C2^2.8(C4xD15)480,173
C22.9(C4xD15) = C60.26Q8central extension (φ=1)480C2^2.9(C4xD15)480,174
C22.10(C4xD15) = C120:13C4central extension (φ=1)480C2^2.10(C4xD15)480,175
C22.11(C4xD15) = D30:3C8central extension (φ=1)240C2^2.11(C4xD15)480,180
C22.12(C4xD15) = C30.29C42central extension (φ=1)480C2^2.12(C4xD15)480,191
C22.13(C4xD15) = C2xC8xD15central extension (φ=1)240C2^2.13(C4xD15)480,864
C22.14(C4xD15) = C2xC40:S3central extension (φ=1)240C2^2.14(C4xD15)480,865
C22.15(C4xD15) = C2xC4xDic15central extension (φ=1)480C2^2.15(C4xD15)480,887
C22.16(C4xD15) = C2xC30.4Q8central extension (φ=1)480C2^2.16(C4xD15)480,888
C22.17(C4xD15) = C2xD30:3C4central extension (φ=1)240C2^2.17(C4xD15)480,892

׿
x
:
Z
F
o
wr
Q
<